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Abstract

In this paper, we provide a theoretical description, and calculate, the nonlinear frequency shift,

group velocity and collionless damping rate, ν, of a driven electron plasma wave (EPW). All these

quantities, whose physical content will be discussed, are identified as terms of an envelope equation

allowing one to predict how efficiently an EPW may be externally driven. This envelope equation

is derived directly from Gauss’ law and from the investigation of the nonlinear electron motion,

provided that the time and space rates of variation of the EPW amplitude, Ep, are small compared

to the plasma frequency or the inverse of the Debye length. ν arises within the EPW envelope

equation as more complicated an operator than a plain damping rate, and may only be viewed as

such because [ν(Ep)]/Ep remains nearly constant before abruptly dropping to zero. We provide a

practical analytic formula for ν and show, without resorting to complex contour deformation, that

in the limit Ep → 0, ν is nothing but the Landau damping rate. We then term ν the “nonlinear

Landau damping rate” of the driven plasma wave. As for the nonlinear frequency shift of the

driven EPW, it is also derived theoretically and found to assume values significantly different from

previously published ones, which were obtained by assuming that the wave was freely propagating.

Moreover, we find no limitation in kλD, k being the plasma wavenumber and λD the Debye length,

for a solution to the dispertion relation to exist, and want to stress here the importance of specifying

how an EPW is generated to discuss its properties. Our theoretical predictions are in excellent

agreement with results inferred from Vlasov simulations of stimulated Raman scattering (SRS),

and an application of our theory to the study of SRS is presented.

∗Electronic address: didier.benisti@cea.fr
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I. INTRODUCTION

Landau damping is a linear, collisionless process, resulting from the global acceleration

of electrons by an electrostatic wave. Indeed, in the linear regime, an electron plasma wave

(EPW) with phase velocity vφ globally accelerates the electrons of initial velocity v0 < vφ,

and decelerates the other ones. When this leads to an overall acceleration of the electrons

by the wave, as for example in an initially Maxwellian plasma then, because of energy (or

momentum) conservation, the plasma wave damps while, in the opposite regime when the

electrons are globally decelerated, the wave grows unstable. The damping, or growth rate,

νL, of the EPW in the linear regime was first derived by Landau in his famous 1946 paper

Ref. [1]. While addressing the growth of the EPW was rather straightforward, Landau had

to use complex contour deformation and analytic continuation to derive the damping rate,

a technique which initially shed some doubts into plasma physicists’ minds as regards the

validity of Landau’s calculation, all the more as Landau never clearly discussed the physics

of damping. Landau damping, or growth, is predominantly due to the nearly resonant

electrons, those whose initial velocity v0 is such that |v0− vφ| . νL/k, where k is the plasma

wave number (while the exactly resonant ones, such that v0 = vφ, do not contribute to it).

Then, as is well known, if νL � ωpe, where ωpe is the plasma frequency, νL is approximately

proportional to the derivative, f ′0(vφ), of the electron distribution function in the limit of a

vanishing field amplitude.

A nonlinear counterpart of νL was first calculated by O’Neil in Ref. [2], who considered an

electron plasma wave of constant and uniform amplitude, E0, which grew infinitely quickly

in an initially Maxwellian plasma. When ωB � νL, where ωB =
√
ekE0/m, −e being

the electron charge and m its mass, most of the nearly resonant electrons are trapped and

oscillate in the wave trough. Within one oscillation period, a trapped electron neither gains

nor loses energy in the wave frame, so that the mechanism which gave rise to Landau

damping vanishes, and so does the damping rate after a few oscillations at a frequency close

to ωB, as shown by O’Neil.

A countless number of papers, addressing both the linear and nonlinear regimes, have

been written since these two seminal works were published. In the linear regime, the physics

of Landau damping was extensively discussed (see Ref. [3, 4] and references therein), and

new derivations of Landau damping which did not resort to complex contour deformation,
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or which extended Landau’s result to non smooth initial distribution functions (as is the

case for a real plasma made of discrete particles) were found (see Ref. [3]). Moreover,

very recently, Belmont et al. showed in Ref. [5] the very unexpected result that an EPW

could damp at a rate different, and lower, than that derived by Landau, provided that this

wave was excited from noise in such a way that the electron distribution function had a

complex pole in velocity space. This shows the importance of specifying the way an EPW

has been created in order to correctly discuss its physics properties and, in particular, to

correctly calculate its complex frequency. In this paper, we provide a derivation of the

Landau damping rate which does not resort on complex contour deformation and which, we

believe, is quite simple. This moreover allows us to discuss the ability to excite a plasma

wave in such a way that it decays at a non-Landau rate.

In the nonlinear regime, several papers recently discussed the very work of O’Neil, even-

tually leading to its experimental check (see Ref. [6] and references therein). Although the

situation considered by O’Neil is physical and could be reproduced experimentally, it is not

the most general one since a plasma wave amplitude usually depends on both space and time.

Generalizing O’Neil’s results has been a long standing problem in plasma physics, which we

address in this paper. In particular, we provide an analytic expression, supported by numeri-

cal results, for the nonlinear collisionless damping rate, ν, of a plasma wave whose amplitude

may vary in space and time, in the limit of non relativistic electron motion and slow am-

plitude variations. We moreover restrict to a driven plasma wave for the following reasons.

First, only if an EPW is externally driven may it grow in an initially Maxwellian plasma

and may global electron acceleration, at the origin of Landau damping, occur. Second, for

a driven wave, the initial conditions can be defined unambiguously and, in particular, one

may assume that the plasma wave amplitude is initially at a noise level. This allows one to

discuss the generality of previous results, regarding the nonlinear dispersion relation of an

EPW, derived by assuming that the wave was freely propagating. Third, our work directly

applies to stimulated Raman scattering (SRS), which is studied as a tool for amplification

of electromagnetic radiation, but which may also be detrimental for an inertial confinement

device such as the Laser MégaJoule [7], because it may induce the reflection of a substantial

part of the incident laser energy. Now, recent numerical [8, 9] and experimental [10] papers

on SRS reported reflectivities far above what could be inferred from linear theory. This so-

called “kinetic inflation” was attributed to the nonlinear reduction of the Landau damping
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rate, although no theory, nor analytic formula, was available to support this assumption.

The present paper addresses this issue and discusses in detail the derivation, and physics,

of the recent theoretical results published in Ref. [11].

There are several caveats in trying to define, and calculate, the nonlinear collisionless

damping rate, ν, of a driven wave. For example, one cannot that easily use energy conserva-

tion as O’Neil did, nor even momentum conservation, to derive ν, because the electrons are

accelerated by both, the drive and the plasma wave. It is usually argued that the plasma

wave amplitude, Ep, is much larger than that, Ed, of the laser drive, and this argument has

been used by Yampolsky and Fisch in Ref. [12] to derive a set of equations from which ν

could be calculated numerically, in case of a purely time growing wave. The relative values

of Ep and Ed has actually been investigated in detail in Ref. [13] where it has been shown

that only in the nonlinear regime when ν ≈ 0, or in the linear regime when the Landau

damping rate is small enough, is Ep � Ed. Moreover, even in these regimes, only the space

integrated energy, or momentum, is conserved, and these global quantities are not easily

related to ν which is defined locally. Since ν is not easily calculated using conservation laws,

in this paper, we will derive it from Gauss’ law, which is unambiguous. Using the electron

susceptibility, χ, introduced in Ref. [14], and whose definition will be recalled in Section II,

we show in the Appendix A that, provided that when Re(χ) ≈ −1 and |Im(χ)| � 1 (which

are easily achieved conditions), Ep is related to Ed and to the dephasing δϕ between the

plasma wave and the external drive by the equation,

Im(χ)Ep − k−1∂xEp = Ed cos(δϕ). (1)

Eq. (1) tells us how efficiently an electron plasma wave may be driven, which is an important

issue since our work was primarily motivated by the estimating of Raman reflectivity in

fusion devices. To this respect, the nonlinear derivation of Im(χ), which will be discussed

in detail throughout this paper, is essential since it is clear, from Eq. (1), that a nonlinear

decrease of Im(χ) would enhance the driving of the EPW and, hence, SRS. Now, it is also

clear that, while it is driven, an EPW accelerates the plasma electrons exactly the same way

as if it were freely propagating, which hampers its growth. The effectiveness of the EPW

drive therefore significantly depends on the rate of energy (or momentum) transfer from the

wave to the electrons, a process akin to that giving rise to the Landau damping of a freely

propagating wave. We would like to make this more transparent by writing Eq. (1) in terms
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of an envelope equation of the form,

∂tEp + vg∂xEp + νEp = Ed cos(δϕ)/∂ωχ
r
env. (2)

Then, vg would be called the group velocity of the plasma wave, and ν its nonlinear Landau

damping rate. In this paper, we indeed show how to derive Eq. (2) from Eq. (1) and we

actually provide an analytic formula for ν, that matches the Landau damping rate, νL, in

the limit of vanishing field amplitudes. We moreover show that ν, which depends on both

the wave amplitude and its space and time variations, may be viewed as a plain damping

rate because it assumes nearly constant values before abruptly dropping to zero. Then,

not only is Eq. (2) physically more transparent than Eq. (1) but it is also easier to solve

numerically to get, for example, quantitative estimates for Raman reflectivity. It is however

important to note that the physical meanings of ν and vg are not as obvious as for a freely

propagating wave. Indeed, usually, the maximum of a driven plasma wave packet does not

travel at vg. Moreover, the amplitude of the driven EPW does not decrease at rate ν, but

grows most of the time. Moreover, although Gauss’ law is unambiguous, there is actually

not a unique way to write Eq. (1) in the form Eq. (2). However, because the transition to

the regime where ν ≈ 0 is quite abrupt, there is actually very little freedom in the choice

for ν, vg and ∂ωχ
r
env in Eq. (2), which vindicates the use of that equation and the values we

derive for its coefficients.

The present paper, which is mainly devoted to the derivation of Im(χ) and of the envelope

equation Eq. (2), is organized as follows. For pedagogical reasons, we will first present in

Section II the derivation of Im(χ) in case of a purely time growing wave, and will explain

how ν and ∂ωχ
r
env can be deduced from Im(χ). In Section III, we will explain how these

results can be generalized to a wave whose amplitude either grows or decays in time. Section

IV addresses the issue of a time and space varying wave amplitude. The envelope equation

for such a wave is derived by using the results obtained in the previous Sections and the

variational approach developed by Whitham in Ref. [15]. Moreover, in Section IV, we show

comparisons between our theoretical predictions for Im(χ) and numerical results inferred

from one dimensional (1-D) simulations of SRS. In this Section will also be discussed how

(3-D) effects may affect the range of the validity of the linear regime in terms on the EPW

amplitude. In Section V we briefly recall results from Ref. [13] on the nonlinear frequency

shift of a driven plasma wave, from which the dephasing δϕ stems and, in Section VI, we
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show one example of the application of our theory to stimulated Raman scattering. Section

VII concludes and summarizes this paper.

II. ENVELOPE EQUATION AND NONLINEAR LANDAU DAMPING RATE

FOR A TIME GROWING DRIVEN PLASMA WAVE

In this Section, we derive the envelope equation for an EPW whose amplitude only

depends on time, and grows with time. This will allow us to introduce in a simple way

most of the concepts useful in the general situation of a time and space dependence of the

wave amplitude. Most of this Section is devoted to the derivation of Im(χ), performed by

using two very different methods yielding values of Im(χ) which do match over a finite range

of wave amplitudes. For small amplitudes, we use a perturbative analysis which provides

an expression for Im(χ) that clearly shows how ν decreases as more and more electrons

are getting trapped in the wave trough. Then, when ν ≈ 0, one can approximate Im(χ)

by, Im(χ) = Γp∂ωχ
r
env, where Γp is the wave growth rate, Γp ≡ E−1

p dEp/dt, and ∂ωχ
r
env is

calculated non perturbatively by making use of the adiabatic approximation. As is illustrated

in Fig. 2, the “adiabatic” and perturbative estimates of Im(χ) assume very close values over

a finite range of wave amplitudes, which allows us to derive an expression for Im(χ) valid

whatever the wave amplitude by “connecting” the two previous estimates, as shown in Fig.

4. This connecting is made through a Heaviside-like function, leading to abrupt changes in

the coefficients of the envelope equation, Eq. (2). In particular, ν is found to assume nearly

constant values before abruptly dropping to 0, and this drop is concomitant with a sudden

rise in ∂ωχ
r
env (see Fig. 5). Indeed, as will be shown here, that part of Im(χ) which provides

ν in the linear regime renormalizes ∂ωχ
r
env when ν ≈ 0.

Let us now enter the details of the theory. We consider here a driven plasma wave,

meaning that the total longitudinal field (along the direction of the wave propagation) is the

sum of the EPW field, which is a genuine electrostatic field induced by charge separation, and

of the driving field (the so-called ponderomotive field in case of laser drive). We moreover

assume that the drive is tailored in such a way that both the electrostatic, Eel(x, t), and the

driving, Edrive(x, t), fields can be expressed in terms of a slowly time varying envelope and
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an eikonal, that is,

Eel(x, t) ≡ Ep(t) sin[ϕp(x, t)], (3)

Edrive(x, t) ≡ Ed(t) cos[ϕp(x, t) + δϕ(t)], (4)

with |E−1
p,d∂tEp,d| � |ω|, ω ≡ −∂tϕp, and |δϕ| � |ϕp|. Then, the total longitudinal electric

field, including the plasma wave and the drive, also writes in terms of a slowly time varying

envelope and an eikonal,

Eel + Edrive ≡ −iE0(t)eiϕ(x,t) + c.c., (5)

where E0 (chosen to be real and positive) and ϕ are given in terms of Ep, Ed, ϕp and δϕ in

Appendix A. This total field induces a charge density which may therefore be written as,

ρ(x, t) ≡ ρ0(t)eiϕ + c.c., (6)

where ρ0 is a slowly varying envelope. Throughout this paper we assume immobile ions, and

define the electron susceptibility as,

χ ≡ iρ0

ε0k(−iE0)
= − ρ0

ε0kE0

, (7)

where k ≡ ∂xϕp is the plasma wave number. When the plasma wave is not driven and E0 is

an electrostatic field, then Gauss’ law straightforwardly yields the usual dispersion relation

1 + χ = 0. In the general case, we use the total field amplitude E0 in the definition of χ

so that the expression of the electron susceptibility would be the same, in terms of the field

amplitude and of the unperturbed distribution function, whether the wave is driven or not.

In particular, it is easy to show that, in the linear limit, χ is nothing but the usual linear

electron susceptibility, as derived in Ref. [16]. Plugging Eq. (7) into Gauss’ law one easily

finds,

Im(χ)Ep = Ed cos(δϕ), (8)

provided that Re(χ) ≈ −1 and |Im(χ)| � 1 (see Appendix A for details). In order derive

Im(χ) and cast Eq. (8) in the form of the envelope equation,

∂tEp + νEp = Ed cos(δϕ)/∂ωχ
r
env, (9)
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we now need to express χ in terms of the electron distribution function. From Eq. (6), it is

clear that ρ0 is nothing but a Fourier component of ρ so that,

ρ0 = (2π)−1

∫ π

−π
ρe−iϕdϕ

=
−ne
2π

∫ π

−π

∫ +∞

−∞
f(ϕ, v, t)e−iϕdvdϕ

≡ −ne〈e−iϕ〉, (10)

where n is unperturbed electron density, f is the electron distribution function normalized

to unity, and 〈.〉 stands for a local, in space, statistical averaging. Since E0 is chosen to be

real, Im(χ) = −ne〈sin(ϕ)〉/ε0kE0, and is therefore proportional to 〈sin(ϕ)〉.
As a first step to calculate 〈sin(ϕ)〉, and therefore Im(χ), we need to evaluate which

electrons significantly contribute to it. This is done by investigating the electrons orbits in

phase space, schematically displayed in Fig. 1. If E0 were a constant, these orbits would be

exactly symmetric with respect to the velocity axis, and 〈sin(ϕ)〉 would be 0. This explains

why an adiabatic estimate of Im(χ), which amounts to replacing the actual orbits by those of

a “frozen” wave, just yields Im(χ) = 0. As a result, we conclude that those electrons whose

motion may be considered adiabatic, and whose orbits are nearly symmetric with respect

to the velocity-axis, contribute very litle to Im(χ) and may therefore be disregarded when

calculating this quantity. Now, clearly, an electron motion may be considered adiabatic if

the typical timescale of variation of E0 is large compared to the time it takes for ϕ, or the

polar angle in phase space, to change by 2π. The latter time, henceforth termed the pseudo

period of the orbit, is very close to 2π/ωB for a trapped orbit far enough from the virtual

separatrix. Hence, as shown in Fig. 1, when ωB � Γ, where Γ ≡ E−1
0 dE0/dt, the orbits

of “deeply” trapped electrons are nearly symmetric with respect to the v-axis, and such

electrons contribute very little to Im(χ).

An important step in the nonlinear derivation of Im(χ) therefore consists in providing

a quantitative criterion that would tell which are the “deeply trapped electrons” that may

be disregarded when calculating Im(χ). First of all, using the adiabatic approximation, one

finds (as shown in Ref. [14]) that an electron is trapped if |v0 − vφ| < 4
√

Φ/π, where v0

and vφ are, respectively, the initial electron and wave phase velocities, normalized to the

thermal speed, vth, and where Φ ≡ eE0/kTe, Te being the electron temperature. Then, an

electron orbit will be considered as “deeply trapped” if |v0 − vφ| < 4
√

Φ/π(1− δV ), where
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δV is so large that the electron orbit lies far enough from the virtual separatrix for the

electron motion to be nearly adiabatic. Now, clearly, as Γ/ωB decreases, more electrons

may be considered adiabatic, and δV should therefore also decrease. As a first guess, we are

therefore led to choose δV proportional to Γ/ωB and, actually, numerical results show that

using δV = (3/2)Γ/ωB yields very accurate results for Im(χ).

In conclusion, when calculating Im(χ), we will henceforth disregard the contribution

of the “deeply trapped electrons” defined as being such that, |v0 − vφ| < Vl, with Vl ≡
max

{
0, (4
√

Φ/π)
[
1− 3γ/2

√
Φ
]}

where, in order to stick to dimensionless variables, we

have defined γ ≡ Γ/(kvth). In other words, Im(χ) will henceforth be estimated as,

Im(χ) ≈
∫
|v|>Vl

f0(v + vφ)I(v)dv, (11)

where f0 is the normalized electron distribution function in the limit of a vanishing field

amplitude, and I(v) if the contribution to Im(χ) of those electrons whose initial velocity

is v0 = v + vφ. Hence, we only provide here a heuristic argument to derive a nonlinear

expression for Im(χ) but, as shown in Figs. 4 and 7, our theoretical estimate agrees very

well with numerical results. It is noteworthy that, for a slowly growing wave, γ/
√

Φ ≡
Γ/ωB ≈ 2/

∫
ωBdt, so that Vl > 0 whenever

∫
ωBdt & π, that is after the first trapped

electrons have completed about one half of their pseudo periodic orbit and the phase mixing

process, introduced by O’Neil in Ref. [2] to explain the nonlinear decrease of ν, has started

to be effective.

Let us now explain how we actually calculate Im(χ) [which amounts to calculating the

function I(v)] from the matching of two different estimates. For small wave amplitudes

(and more precisely when
√

Φ � γ), we use a perturbative analysis to derive Im(χ), while

when
√

Φ � γ (or more precisely Vl � γ) we will show that Im(χ) is nearly proportional

to γ and can be very accurately estimated by making use of the adiabatic approximation.

Let us start with the perturbative estimate of Im(χ). There are several reasons to believe

that a perturbative analysis will be useful in deriving Im(χ). First, it has been proven in

Ref. [17] that for small enough wave amplitudes, linear theory, which stems from a first

order perturbative analysis of the electron motion, is valid. Second, the electrons whose

motion is non perturbative are mostly the deeply trapped ones, whose contribution is not

accounted for when calculating Im(χ). Mathematically, this amounts to bounding from

below the small denominators in the perturbative expression of Im(χ). Actually, although
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-1 1 
0 

ϕ/π

v − vφ

FIG. 1: Orbits of electrons acted upon by the longitudinal field 2E0 sin(ϕ), whose amplitude slowly

varies with time. The dashed curve is the virtual separatrix.

√
Φ

vφ = 3, γ = 0.01

−〈
si

n(
ϕ
)〉/

Φ

√
Φ

vφ = 3, γ = 0.01

−〈
si

n(
ϕ
)〉/

Φ

FIG. 2: −〈sin(ϕ)〉/Φ as a function of
√

Φ calculated numerically (blue solid line), pertubatively

(green dashed line), and adiabatically (red dashed-dotted line) when the normalized wave phase

velocity is vφ = 3 and the normalized growth rate is γ = 0.01.

rigourous estimates remain to be done, it appears from the results of Ref. [14] that the

“small parameter” of the perturbative expansion for Im(χ) varies from
√

Φ/γ when Vl � γ,

to
√

Φ/Vl when Vl � γ, and hence remains bounded. However, a perturbative estimate of
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−〈
si

n(
ϕ
)〉/

Φ

−〈
si

n(
ϕ
)〉/

Φ

√
Φ

√
Φ

(a) (b) vφ = 4, γ = 0.1 vφ = 4, γ = 0.2

FIG. 3: −〈sin(ϕ)〉/Φ as a function of
√

Φ calculated numerically (blue solid line), pertubatively

(green dashed line), and adiabatically (red dashed-dotted line), when the normalized wave phase

velocity is vφ = 4 and, panel (a), when the normalized growth rate is γ = 0.1, panel (b), when the

normalized growth rate is γ = 0.2.

Im(χ) eventually ceases to be accurate as the wave grows. Physically, this may be understood

by the fact that, as
√

Φ/γ increases, the electrons have to lie on orbits closer to the separatrix

to significantly contribute to Im(χ), and the motion close to the separatrix is known to be

non perturbative. Note, again, that
√

Φ/γ ≈ ∫ ωBdt/2, so that
√

Φ/γ be large corresponds

to the usual criterion for a highly nonlinear, and hence non perturbative, electron response.

Let us now detail the perturbative expression of Im(χ), which sheds a lot of light on the

nonlinear decrease of ν, and on how Im(χ) may be estimated when
√

Φ/γ is large. We start

with a first order estimate of Im(χ). This estimate is obtained by neglecting the contribution

of the deeply trapped electrons, and by deriving that of all other electrons from a first order

perturbation analysis of their motion that is, from linear theory. Hence, at first order, Im(χ)

is given by Eq. (11) where the function I(v) assumes its linear value, that may be found in

the well-known paper by Fried and Gould Ref. [16]. Then, at first order in the perturbation

analysis, and at 0-order in the time variations of γ and vφ, we find,

Im(χ) =
−2

(kλD)2

∫
|v|>Vl

γv

(γ2 + v2)2
f0(v + vφ)dv, (12)

where λD ≡ vth/ωpe is the Debye length. Now, Eq. (8) derived from Gauss’ law is the

envelope equation Eq. (9) only if Im(χ) may be written as, Im(χ) ≈ δI1 + ΓpδI2, where
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(a)   1st order (b)   11th order 

FIG. 4: −〈sin(ϕ)〉/Φ as a function of
√

Φ/γ when the normalized wave phase velocity is vφ = 3 and

the normalized growth rate is γ = 0.01, as calculated numerically (green solid line) and theoretically

by “connecting” the perturbative and adiabatic estimates using Eq. (17) (blue solid line) with,

panel (a), Im(χper) calculated using a 1st order perturbation analysis, panel (b), Im(χper) derived

from an 11th order perturbation theory.

Γp ≡ E−1
p dEp/dt, and where δI1 and δI2 only depend on the wave amplitude and not on

its time variations (at least over finite ranges of amplitudes). As shown in Ref. [13], either

Ep � Ed, so that Ep ≈ E0, or ν is so large that the term νEp dominates in the left hand

side of Eq. (9) and Ep ≈ Ed/ν. In either case, Γp ≈ Γ ≡ E−1
0 dE0/dt. We therefore only

need to write Im(χ) as Im(χ) ≈ δI1 + ΓδI2, which clearly requires to isolate the divergence

of the integrand in Eq. (12) when Vl = 0 and γ → 0. We do this by using the following

decomposition, Im(χ) = I1 + I2, with,

I1 ≡ −2f ′0(vφ)

(kλD)2

∫
|v|>Vl

γv2

(γ2 + v2)2
dv

= − f ′0(vφ)

(kλD)2

[
π − 2 tan−1

(
Vl
γ

)
+

2γVl
γ2 + V 2

l

]
, (13)

I2 ≡ −2γ

(kλD)2

∫
|v|>Vl

v

(γ2 + v2)2
[f0(v + vφ)− vf ′0(vφ)]dv. (14)
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FIG. 5: Panel (a), variations of ∂ωχrenv and, panel (b), variations of ν, normalized to their linear

values, as a function of
√

Φ/γ, calculated when vφ = 3 and γ = 0.01 by using a first order

perturbative analysis to derive Im(χper).

Since γ � 1, one may approximate I2 by replacing (γ2 + v2) by v2 to find,

I2 ≈ −2

(kλD)2
γ

∫
|v|>Vl

f0(v + vφ)− vf ′0(vφ)

v3
dv (15)

≡ Γ(∂χr1/∂ω), (16)

where the integral in Eq. (15) has to be taken in the sense of Cauchy’s principal part when

Vl = 0.

When Vl = 0, χr1 is just the adiabatic approximation of the linear value of Re(χ) (and

its value does not change much provided that Vl . 1), while I1 = −π(kλD)−2f ′0(vφ). Hence,

Im(χ) is in the desired form, Im(χ) = −π(kλD)−2f ′0(vφ)+Γ∂ωχ
r
1, so that Eq. (8) may indeed

be written as the envelope equation, Eq. (9), with ∂ωχ
r
env = ∂ωχ

r
1, and ν = νL, the Landau

damping rate in the limit νL � ωpe.

When Vl � γ, I1 is nearly proportional to γ and therefore so is Im(χ), which is actually

obvious from Eq. (12). Then, Eq. (8) straightforwardly writes as Eq. (9) with ν ≈ 0;

Landau damping has become negligible in the time evolution of the driven plasma wave.

Physically, the decrease of ν towards 0 is due to the trapping of the nearly resonant electrons,

which no longer contribute to ν while oscillating in the wave trough, just like in the situation

13



considered by O’Neil.

Replacing (γ2 + v2) by v2 in Eq. (12), which is valid when Vl � γ, one actually finds

Im(χ) = Γ∂ωχ
r,1
eff , where χreff is some effective real susceptibility, calculated adiabatically

and by removing the contribution of the deeply trapped electrons, and χr,1eff its first order

approximation. Going to order n > 1 in the perturbation analysis, one would find the nth

order approximation of χreff (the corresponding heavy calculations will not be reproduced

here). We therefore expect that, when
√

Φ � γ, Im(χ) ≈ Γ∂ωχ
r
eff, where χreff may actually

be calculated non perturbatively by making use of the adiabatic approximation, as shown

in Ref. [14]. The latter non perturbative expression for Im(χ) will henceforth be termed

the “adiabatic estimate” of Im(χ) [although this is not a proper terminology since a direct

adiabatic calculation of Im(χ) would just yield Im(χ) = 0]. It is noteworthy that the I1 term

Eq. (13) which, in the linear limit provides ν, fully contributes to ∂ωχ
r
eff when ν ≈ 0. In the

strong damping limit, when νL � Γ, ∂ωχ
r
env may then increase by more than one order of

magnitude, as illustrated in Fig. 5.

Let us now compare the perturbative and adiabatic estimates of Im(χ) to those derived

from test particles simulations. Numerically, we calculate the dynamics of electrons acted

upon by an exponentially growing wave, and estimate 〈sin(ϕ)〉 =
∑N

i=1wi sin(ϕi), where the

sum runs over all the electrons used in the simulation, and wi ≡ f0(v0i), where v0i is the

initial velocity of the ith electron and f0 is the normalized unperturbed distribution function.

In our simulations, we chose f0(v) = (2π)−1/2 exp(−v2/2). Whatever the wave phase velocity

and for small enough growth rates, we always found that the high (11th) order perturbative

estimate of Im(χ) was valid at least up to
√

Φ/γ ≈ 10, while the adiabatic estimate was

correct whenever
√

Φ/γ & 3 (see Fig. 2). Such comparisons moreover allowed us to conclude

that an adiabatic estimate of Im(χ) was only accurate if γ . 0.1, as illustrated in Fig. 3.

Using the perturbative, Im(χper), and adiabatic estimates of Im(χ) within their respective

ranges of validity, which do overlap, we obtain the following expression for Im(χ), valid

whatever the wave amplitude,

Im(χ) = Im(χper)
[
1− Y

(√
Φ/γ

)]
+ Γ∂ωχ

r
effY

(√
Φ/γ

)
, (17)

where Y is a function rising from 0 to 1 as
√

Φ/γ increases. Since, as shown in Fig. 2, the

convergence of Γ∂ωχ
r
eff towards Im(χ) is quite sharp, Y should rise very quickly from 0 to

1 as
√

Φ/γ increases from a little less than 3 to a little more than 3. This is the case if we

14



choose Y (x) = tanh5[(ex/3 − 1)3]. Fig. 4 shows comparisons between theoretical values of

−〈sin(ϕ)〉/Φ derived from Eq. (17), and numerical ones provided by test particles simula-

tions. From this Figure, it is clear that using a high (11th) order perturbative expression for

Im(χper) yields very accurate values for −〈sin(ϕ)〉/Φ, and hence for Im(χ), while calculating

Im(χper) at first order already yields very good results, with much more simple formulas!

Therefore, for practical purposes such as the numerical study of SRS, we restrict to first

order expressions. Then, from Eq. (17) and the expression found previously for Im(χper),

we conclude that Gauss’ equation, Eq. (8), is the envelope equation, Eq. (9), with,

χrenv = (1− Y )× χr1 + Y × χreff, (18)

ν = (1− Y )× I1/∂ωχ
r
env ≈ (1− Y )× I1/∂ωχ

r
1, (19)

where I1 and χr1 are defined by Eqs. (13) and (16). In other words, Im(χ) ≈ ∂ωχ
r
env(Γp + ν).

If we were to replace γ by (kvthEp)
−1dEp/dt in the expression (13) for I1, we would find

that ν actually is much more complicated an operator than a plain damping rate. However,

as shown in Fig. 5, provided that γ remains nearly constant, ν assumes nearly constant

values before abruptly dropping to 0. ν may then indeed be viewed as a damping rate,

both physically and when numerically solving the envelope equation, Eq. (9). We therefore

successfully defined an effective nonlinear damping rate, ν, yielding the time evolution of the

driven plasma wave, which was our prime goal. We term ν the “nonlinear Landau damping

rate” of the driven plasma wave because it physically stems from the electron acceleration

by the EPW, which is the very mechanism giving rise to the Landau damping of a freely

propagating wave. Then, as expected, the linear value of ν is nothing but the Landau

damping rate. Note that we relate ν to the effectiveness of the driving of a plasma wave

and not to any other quantity, such as the energy gain by the electrons from the wave. As

shown in Fig. 5, the drop in ν is concomitant with a rapid growth of ∂ωχ
r
env so that Im(χ),

and the efficiency of the driving of the EPW, varies smoothly.

III. GENERALIZATION TO AN ARBITRARY TIME DEPENDENCE OF THE

WAVE AMPLITUDE

In this Section, we generalize the results derived previously to a plasma wave whose

amplitude may vary arbitrarily in time, provided that the growth rate, Γ ≡ E−1
0 dE0/dt, is
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still such that |Γ| � ωpe. We shall moreover show that the formula (19) for ν, with I1 given

by Eq. (13), is still useful provided that γ is defined properly i.e., by Eq. (34).

We start by estimating 〈e−iϕ〉 through the means of a first order perturbation analysis,

which proved in the preceding Section to be an important step in the derivation of Im(χ).

By using the Hamiltonian perturbation analysis detailed in Appendix B one finds, at first

order, ϕ(τ) = ϕ0 + (v0− vφ)τ + δϕ, where τ = kλDωpet, velocities are still normalized to the

thermal one, and,

δϕ = −ei(ϕ0+wτ) ∂

∂w

∫ τ

0

Φ(u)eiw(u−τ)du+ c.c., (20)

where we have denoted w ≡ v0 − vφ. Then,

〈e−iϕ〉 ≈ 〈−iδϕe−i(ϕ0+wτ)〉
= i

∫
|w|>Vl

f0(w + vφ)
∂

∂w

∫ τ

0

Φ(u)eiw(u−τ)dudw, (21)

where Vl is a straightforward generalization, using the phase mixing argument, of the value

found in the previous Section i.e., Vl = 4
√

Φ/π
[
1− 3/

∫ t
0
ωB(u)du

]
, and where f0 is the

electron distribution function in the limit Φ→ 0.

If Φ has kept on increasing with time, f0 is nothing but the unperturbed distribution

function. If Φ has reached a large enough value to induce nonlinear electron motion before

decreasing to nearly 0, a perturbative analysis of the electron motion from t = 0 is no

longer valid to estimate 〈e−iϕ〉 once Φ has decreased back to small values. However, one

may calculate the electron motion perturbatively from t = +∞ by invoking the time-reversal

invariance of the dynamics. Then, f0 is the distribution function in the limit t→ +∞ which,

as shown in Ref. [14], and as illustrated in Fig. 6, results from the electrons symmetric

detrapping with respect to vφ. As a result, in the interval |v− vφ| > max(Vl), f0(v, t = +∞)

assumes the same values as the initial, unperturbed, distribution function, while in the

interval |v − vφ| ≤ max(Vl), f0(v, t = +∞) is nearly symmetric with respect to vφ. Then,

electrons whose initial velocity lies within the latter interval contribute very little to Im(χ).

This means that once deeply trapped, electrons no longer contribute significantly to Im(χ),

even after being detrapped. Eq. (21) may therefore be simplified by using for f0 the

unperturbed distribution function and by replacing Vl by max(Vl). Such a simplfication will

be implicitly used throughout the remainder of this paper.

We now use the same kind of decomposition as in the previous Section to find a suitable
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FIG. 6: Results from Valsov simulations of stimulated Raman scattering showing, panel (a), the

plasma wave amplitude (in its reference frame and in arbitrary units) as a function of time (nor-

malized to the laser period), panel (b), the space averaged electron distribution function at the

three different times indicated by the arrows in panel (a). Note that, as the EPW amplitude

decreases, the space averaged distribution function becomes more symmetric with respect to vφ.

Note moreover that, although Ep is the same at times t/τ0 = 3365 and t/τ0 = 3726, the space

averaged distribution functions at these two times are very different from each other. Hence, the

electron distribution function depends not only on the instantaneous wave amplitude, but also on

the maximum one.

expression of Im(χ) i.e., we write, χ = (kλD)−2〈e−iϕ〉/Φ ≡ χa + χb, with,

χa =
if ′0(vφ)

(kλD)2Φ(τ)

∫ τ

0

Φ(u)(u− τ)

∫
|w|>Vl

iweiw(ξ−τ)dwdu, (22)

χb =
i

(kλD)2Φ(τ)

∫
|w|>Vl

[f0(w + vφ)− wf ′0(vφ)]×(
∂

∂w

∫ τ

0

Φ(u)eiw(u−τ)du

)
dw. (23)

Provided that Φ(τ) � Φ(0), integrating Eq. (23) by parts with respect to time yields, at

first order in the time variations of Φ,

Im(χb) ≈ −2(kλD)−2Φ−1dΦ

dτ

∫
|w|>Vl

f0(w + vφ)− wf ′0(vφ)

w3
dw (24)

≡ Γ(∂χr1/∂ω), (25)

where, again, the integral in Eq. (25) has to be taken in the sense of Cauchy’s principal

part when Vl = 0. Hence, in the limit of a slowly varying wave amplitude, the expression of

Im(χb) is exactly the same as that of the term I2 found in the previous Section, Eq. (15).
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When Vl = 0, since
∫ +∞
−∞ iweiw(u−τ)dw = 2π∂uδ(u− τ), where δ is the Dirac distribution,

one easily finds Im(χa) = −(kλD)2πf ′0(vφ). Hence when Vl = 0, which corresponds to the

linear limit, Im(χ) = Γ∂ωχ
r
1 − π(kλD)−2f ′0(vφ), so that Gauss’ equation (8) is,

∂tEp + νLEp = Ed cos(δϕ)/∂ωχ
r
1, (26)

where νL is the Landau damping rate, in the limit νL � ωpe. Since our linear calculation is

valid whether the plasma wave is driven, or not, it unambiguously shows Landau damping,

without resorting to complex contour deformation. This therefore allows us to conclude that

non-Landau damping, as described by Blemont et al. in Ref. [5], cannot be obtained by

using a drive at the same frequency as the plasma wave to excite it above the noise level,

and then let it freely propagate.

In the nonlinear regime, and when V −1
l is much smaller than the typical timescale of

variation of Φ, τφ, calculating the time integral in Eq. (22) by parts yields,

Im(χa) = −(kλD)−2Φ−1f ′0(vφ)[4V −1
l dΦ/dτ +O(V −3

l d3Φ/dτ 3)]. (27)

Hence, when Vl � τ−1
φ , Im(χa) is nearly proportional to Γ, and therefore so is Im(χ), which

implies ν ≈ 0. Again, as in the previous Section, we find that the decrease of ν towards 0 is

due to the trapping of the nearly resonant electrons. Moreover, it is easy to show that in the

limit Vl � γ, the I1 term Eq. (13) of the previous Section, is close to −4(kλD)−2f ′0(vφ)γ/Vl,

just as Im(χa). We therefore conclude that, in the limit of large Vl, when ν ≈ 0, the results

obtained in the previous Section for a growing wave are valid whatever the time dependence

of the wave amplitude. Hence, when Vl � τ−1
φ which, for a slowly varying wave is typically

the case when
∫ t

0
ωBdu � 1, we expect Im(χ) ≈ Γ∂ωχ

r
eff, where χreff is the same as in the

preceding Section. Then, generalizing the results of Section II, we propose the following

expression for Im(χ),

Im(χ) = Im(χper)

[
1− Y

(
2

∫ t

0

ωBdu

)]
+ Γ∂ωχ

r
effY

(
2

∫ t

0

ωBdu

)
, (28)

where Y is the same function as for a growing wave, and where Im(χper) is still the pertur-

bative estimate of Im(χ) which, at first order, is Im(χper) = Im(χa + χb) defined by Eqs.

(22,23). Eq. (28), when generalized to allow for the space variation of the wave amplitude,

yields results in very good agreement with those inferred from Vlasov simulations of SRS,
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as shown in Fig. 7. From the expression (28) of Im(χ), and Gauss’ law Eq. (8), we derive

the envelope equation (9) with,

χrenv = (1− Y )× χr1 + Y × χreff, (29)

ν = (1− Y )× Im(χa)/∂ωχ
r
env. (30)

Since, whenever Y is close to 0, χrenv ≈ χr1, Eq. (30) for ν may be simplified in,

ν ≈ (1− Y )× Im(χa)/∂ωχ
r
1. (31)

We now try to find a more simple expression for Im(χa), leading to a practical analytic

formula for ν. In the limit of large Vl, we already showed that Im(χa) was well approximated

by Eq. (13) for I1. In the opposite limit when Vl � τ−1
Φ , as shown in Appendix C, we find,

Im(χa) = −(kλD)−2f ′0(vφ)[π + δχa], with,

δχa ≈ − 4V 3
l

3Φ(τ)

∫ τ

0

∫ u

0

∫ ξ

0

Φ(ξ′)dξ′dξdu. (32)

Similarly, when Vl � γ, a Taylor expansion of Eq. (13) yields I1 = −(kλD)−2f ′0(vφ)[π+δI1],

with δI1 ≈ −(4/3)(Vl/γ)3. Since, for a slowly varying wave, and when Φ(τ) � Φ(0),

δχa ≈ −[4V 3
l /3Φ3]

(∫ τ
0

Φ(u)du
)3

, we find that Eq. (13) still applies in the general case, and

in the limit Vl � τ−1
Φ , provided that γ be replaced by Φ(τ)/

∫ τ
0

Φ(u)du. Hence, while for an

exponentially growing wave, for which Eq. (13) is exact, γ ≡ Φ−1dΦ/dτ = Φ(τ)/
∫ τ

0
Φ(u)du,

we find that Eq. (13) still holds in the general case provided that, γ = Φ(τ)/
∫ τ

0
Φ(u)du

when Vl � τ−1
Φ , and γ = Φ−1dΦ/dτ when Vl � τ−1

φ . Therefore, we propose the following

approximate expression for Im(χa),

Im(χa) = − f ′0(vφ)

(kλD)2

[
π − 2 tan−1

(
Vl
γ

)
+

2γVl
γ2 + V 2

l

]
, (33)

γ =
Φ(τ)− Φ(τ − π/Vl)∫ τ

τ−π/Vl
Φ(u)du

, (34)

where it is clear that γ defined by Eq. (34) has the required properties, γ ≈ Φ(τ)/
∫ τ

0
Φ(u)du

when Vl � τ−1
Φ , and γ ≈ Φ−1dΦ/dτ when Vl � τ−1

φ . Eqs. (33,34) have been used when

comparing our theoretical estimate to numerical ones, and the good agreement between these

two estimates, illustrated in Fig. 7, shows the relevance of our approximation. Then, Eq.

(31), together with Eqs. (33,34), provide a practical analytic formula for ν. The accuracy of

Im(χ), and thus of ν, can even be improved by using, instead of Eq. (33), a result derived

at higher order in the perturbative analysis (see Ref. ([11]).
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IV. SPACE AND TIME VARIATION OF THE WAVE AMPLITUDE

A. One dimensional (1-D) space variation and comparisons with 1-D simulations

of Stimulated Raman Scattering

1. Theory

In this Section, we allow for 1-D space variations of the waves amplitudes and assume

that the electrostatic and driving fields are,

Eel(x, t) ≡ Ep(x, t) sin[ϕp(x, t)], (35)

Edrive(x, t) ≡ Ed(x, t) cos[ϕp(x, t) + δϕ(x, t)], (36)

with |E−1
p,d∂xEp,d| � |k| and |E−1

p,d∂tEp,d| � |ω|. We may therefore write the total longitudinal

field as,

Eel(x, t) + Edrive(x, t) ≡ −iE0(x, t)eiϕ + c.c., (37)

with |E−1
0 ∂xE0| � |k| and |E−1

0 ∂tE0| � |ω|, and the expressions of E0 and ϕ in terms of Ep,

Ed, ϕp and δϕ may be found in Appendix A. We moreover also write the charge density as,

ρ(x, t) = ρ0(x, t)eiϕ + c.c., (38)

where ρ0 is a slowly varying envelope.

In order to take advantage of the results derived in the previous Sections, we want to

express E0 and ρ0 in terms of Fourier integrals. Then, E0 and ρ0 are,

E0 =

∫ +∞

−∞
Ẽk+k′(t)ei(k+k′)xdk′, (39)

ρ0 =

∫ +∞

−∞
ρ̃k+k′(t)ei(k+k′)xdk′, (40)

where, clearly, the functions Ẽk+k′ and ρ̃k+k′ are very peaked about k′ = 0. We moreover

introduce, ξk+k′ ≡ iρ̃k+k′/[ε0(k + k′)Ek+k′ ] so that,

ρ0/ε0 =

∫ +∞

−∞
−i(k + k′)ξk+k′Ẽk′ei(k+k)′xdk′ (41)

≈ −i
∫ +∞

−∞
[kξk + k′ξk + kk′∂kξk]Ẽk′ei(k+k)′xdk′ (42)

= −ikξkE0 − (ξk + k∂kξk)∂xE0. (43)
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Now, if we keep the definition, χ ≡ iρ0/(ε0kE0), we find,

χ = ξk − iκ(ξk/k + ∂kξk), (44)

where κ ≡ E−1
0 ∂xE0 ≈ E−1

p ∂xEp. In the limit κ → 0 we find χ = ξk, so that at first order

in κ, ξk = χ0D + iκC(Ep), where χ0D is the value of χ found in the previous Sections for

uniform fields amplitudes, and C is a function of Ep which is still to be calculated. However,

in the linear regime, it is clear that C = 0 since each ρ̃k+k′ is only induced by Ẽk+k′ . At first

order in κ, the imaginary part of Eq. (44) then yields,

Im(χ) = Im(χ0D)− κ[Re(χ0D)/k + ∂kRe(χ0D)− C(Ep)]. (45)

Plugging this into Eq. (1) and using for Im(χ0D) the expression derived in the previous

Sections, we find,

∂ωχ
r
env∂tEp + {k−1[1 + Re(χ)] + ∂kRe(χ)− C}∂xEp + ν∂ωχ

r
envEp = Ed cos(δϕ), (46)

where we dropped the index 0D in Re(χ) because, as discussed in Section V, this quantity

may be estimated by making use of the adiabatic approximation and therefore assumes

nearly the same values in (1-D) as in (0-D). We now make the approximation, 1+Re(χ) = 0,

and use the result that k2Re(χ) is only a function of the EPW phase velocity, vφ, to find,

∂kRe(χ) = vφ∂ωRe(χ) + 2Re(χ)/k ≈ vφ∂ωRe(χ)− 2/k. Then, Eq. (46) is,

∂ωχ
r
env(∂tEp+vφ∂xEp)+[∂ωRe(χ)−∂ωχrenv−C−2/k]∂xEp+ν∂ωχ

r
envEp = Ed cos(δϕ). (47)

Now, the term in square brackets in the left-hand side of Eq. (47) is that part of Im(χ)

which accounts for the dispersive properties of the EPW. This term may be calculated

by making use of a nonlinear wave theory which does not account for the drive, nor for

Landau damping, since the origin dispersion is not to be found in any of these effects.

Such a theoretical framework is provided by the famous variational approach developed

by Whitham in Ref. [15] and, in the present case, Whitman’s result would be that the

dispersive term is −2/k. Indeed, from Whitham’s nonlinear theory, the group velocity of

an undamped and freely propagating wave is vg = −∂kRe(χ)/∂ωRe(χ) which, for a plasma

wave, translates into ∂ωRe(χ)(vg − vφ) = −2/k. Using this result, we find that the envelope

equation Eq. (47) is,

∂ωχ
r
env {∂tEp + [vφ − 2/(k∂ωχ

r
env)]∂xEp + νEp} = Ed cos(δϕ), (48)
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which shows that the EPW nonlinear group velocity is vg = vφ − 2/(k∂ωχ
r
env). In the linear

limit, χrenv = Re(χ), so that one recovers the usual result vg = ∂kRe(χ)/∂ωRe(χ). However,

this result no longer holds once Landau damping is significantly reduced compared to its

linear value and ∂ωχ
r
env � ∂ωRe(χ). In this regime, vg may get quite close to the EPW

phase velocity, as shown in Fig. 8 (d). This result was moreover checked directly in Ref.

[18] through the use of very simple Valsov simulations. Note moreover that the nonlinear

function C(Ep) introduced in Eq. (45) is nothing but, C(Ep) = ∂ωRe(χ) − ∂ωχ
r
env. As

expected, it is zero in the linear regime, but changes nonlinearly because of the contribution

of that operator which, in the linear regime, was responsible for Landau damping. That

vg 6= −∂kRe(χ)/∂ωRe(χ) is therefore due to an effect reminiscent of Landau damping, which

is not accounted for in Whitham’s theory.

The envelope equation Eq. (48) found here heuristically is derived in Ref. [18] from a di-

rect nonlinear calculation of Im(χ), which is mere generalization of the calculation presented

in the previous Sections. Then, χrenv is found to assume exactly the same value as in the Sec-

tions II and III, except that all quantities must now be evaluated in the wave frame. More

precisely,
∫ t

0
ωBdu in Eq. (28) or in the definition of Vl now is,

∫ t
0
ωB[x − ∫ t

u
vφ(t′)dt′, u]du,

and the value for γ to be used in Eq. (33) is,

γ(x, τ) =
Φ(x, τ)− Φ

[
x− ∫ τ

τ−π/Vl
vφ(u)du, τ − π/Vl

]
∫ τ
τ−π/Vl

Φ
[
x− ∫ t

u
vφ(t′)dt′, u

]
du

. (49)

2. Comparisons with numerical results

Let us now compare our theoretical prediction for Im(χ) against direct 1-D Vlasov simu-

lations of SRS, using the Eulerian code ELVIS [9]. In our numerical simulations, which are

detailed in Refs. [9, 13], the EPW results from the interaction of a pump laser, entering from

vacuum on the left (x = 0), and of a small-amplitude counterpropagating “seed” light wave

injected from the right. Using a Hilbert transform of the fields, one can numerically calculate

the ratio [Ed cos(δϕ) + k−1∂xEp]/Ep, which from Eq. (1) yields a first, numerical estimate,

of Im(χ). From Vlasov simulations one can also extract the values of all the quantities,

such as
∫
ωBdt and γ, which enter our theoretical formula for Im(χ). Using these values we

calculate a second, theoretical estimate, for Im(χ). Both these estimates are compared in

Fig. 7, plotting Im(χ) as a function of ωlt, where ωl is the laser frequency. The simulation
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FIG. 7: Time variations of Im(χ) as calculated theoretically (green dashed line), and as calculated

numerically (blue solid line) without, panel (a), or with, panel (b), the (v × B) term of Vlasov

equation multiplied by a Lorentzian function.

results of Fig. 7 correspond to a plasma with electron temperature, Te = 5keV, and electron

density n = 0.1nc, where nc is the critical density. The laser intensity is Il = 4×1015W/cm2

while the seed intensity is Is = 10−5Il and the seed wavelength is λs = 0.609µm. The

results plotted in Fig. 7 (a) correspond to a simulation box of length L = 285λl, where

λl = 0.351µm is the laser wavelength, and were measured at x = 77λl. In case of Fig. 7(b),

the length of the simulation box is L = 350λl, while the data were measured at x = 150λl.

Moreover, in case of Fig. 7(b), the (v×B) term in Vlasov equation was artificially multiplied

by a Lorentzian function, so as to mimic laser focusing which would occur in more than one

space dimension. As can be seen in Fig. 7, there is a very good agreement between the

theoretical and numerical values of Im(χ), especially as regards the decrease of Im(χ) from

its linear value in Fig. 7 (a), while the oscillations in Im(χ) due to those of γ are very well

reproduced in Fig. 7 (b).

The time variations of all the terms in the envelope equation (48) are plotted in Fig. 8 for

the same conditions as in Fig. 7 (a). Fig. 8(b) clearly shows that ν remains nearly constant

before abruptly dropping to 0, and that this is concomitant with a sudden rise in ∂ωχ
r
env, as

for a purely time growing wave. This is very different from the oscillating result found by

O’Neil because, in this paper, we consider slowly varying waves inducing a nearly adiabatic

electron motion. As a consequence, electrons orbits are deformed as the wave grows so that
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FIG. 8: Panel (a), Im(χ) as calculated numerically (blue solid line) and theoretically (green dashed

line, panel (b) ν normalized to the Landau damping rate, panel (c), ∂ωχrenv normalized to its linear

value and, panel (d), the EPW group velocity (blue solid line) and phase velocity (red dashed line)

normalized to the thermal one.

electrons with the same initial velocity are all trapped nearly simultaneously, and phase

mixing at the origin of the decrease of ν is very efficient. In the situation considered by

O’Neil, electrons with the same initial velocity are not all trapped by the wave, depending

on their initial position. Moreover, when the wave amplitude has reached its constant value,

the electrons orbits are essentially unperturbed, so that it takes more time for phase mixing

to be effective. Hence, ν is less efficiently reduced to 0 in the O’Neil situation than in ours,

and we find ν ≈ 0 whenever
∫
ωBdt & 6, instead of ωBt & 30 as found by O’Neil.

B. Three dimensional (3-D) space variation

We now discuss how, and when, 3-D effects may change the results derived previously,

in the limit of a nearly unperturbed transverse electron motion. In case of a laser driven

plasma wave, and when the laser electric field is polarized along the y direction, one easily
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finds from Newton equations,

vy = v0y +O(eA/m), (50)

vz = v0z +O[(eA/m)2/c], (51)

where A is the amplitude of the laser vector potential, while v0y and v0z are the unperturbed

transverse velocities. Hence, the transverse motion may be considered as unperturbed pro-

vided that eA/m� vth. This condition is fulfilled, for example, for typical laser and plasma

conditions met in inertial confinement fusion.

Let us now consider electrons with the same transverse velocities. Their contribution to

Im(χ), which we denote by I1D(v0y, v0z), is derived from the formulas of Sections III and IV,

provided that all quantities such as
∫ t

0
ωBdt, or γ, be now calculated in the frame moving at

velocity ~v = vφx̂+ v0yŷ + v0z ẑ with respect to the laboratory frame since, in this frame, the

electrons have no transverse motion. In particular,
∫ t

0
ωBdu now is,

∫ t
0
ωB[x−∫ t

u
vφ(t′)dt′, y−

v0y(t − u), z − v0z(t − u), u]du, and clearly assumes lower values than in 1-D. Indeed, the

electrons interact with the wave during a smaller time since, due to their transverse motion,

they escape more rapidly from the region where the wave amplitude is significant. We

therefore expect Im(χ) to remain close to its linear value, and ν close to νL, up to longer

times in 3-D than in 1-D. Now, in order to calculate Im(χ), we just need to sum over all

contributions I1D(v0y, v0z), that is,

Im(χ) =

∫ +∞

−∞
I1D(v0y, v0z)f0(v0y, v0z)dv0ydv0z, (52)

where f0(v0y, v0z) is the unperturbed transverse distribution function. Im(χ) assumes values

significantly different from those derived in 1-D if |κy,zvth| & |Γ + κvth|, where κy,z ≡
E−1
p ∂y,zEp, that is when the field amplitude variations experienced by the electrons is mainly

due to the y or z dependence of Ep. Then, not only would ν decrease later as a function of

time, but also more smoothly because the Heavyside-like function found in Sections II and

IV is now convoluated with f0. Hence, ν becomes a complicated operator of the transverse

gradients of the wave amplitude, and may only be seen again as a damping rate if these

gradients may be viewed as given parameters. For example, in case of a laser-driven plasma

wave, the transverse dependence of Ep is directly related to that of the laser intensity, due

to its focusing inside of the plasma, and may therefore be considered as given.

25



V. NONLINEAR FREQUENCY SHIFT OF A DRIVEN PLASMA WAVE

In this Section, we briefly recall the results discribed in Ref. [13] regarding the nonlinear

frequency of a driven plasma wave. Plugging the definition (7) of χ into Gauss’ law, one

finds the following dispersion relation,

1 + αdRe(χ) = 0, (53)

where

αd =
1 + 2(Ed/Ep) sin(δϕ) + (Ed/Ep)

2

1 + (Ed/Ep) sin(δϕ)
. (54)

When the plasma wave is not driven, and Ed = 0, αd = 1 and one recovers the usual

dispersion relation 1 + Re(χ) = 0. The linear value, αlin, of αd is chosen so as to correspond

to the linearly most unstable wave against SRS, and its value results from the optimizing of

two opposite trends. On one hand, it seems clear that it is easier to drive an electrostatic

wave if this wave is a natural plasma mode. Hence, αlin should be close to unity. On the

other hand, a wave grows more effectively if its Landau damping rate is small, that is if its

phase velocity is large compared to the thermal one. Since, for a given wave number, k, the

frequency ω derived from Eq. (53) increases with αd, we conclude that αlin & 1. Moreover,

because the Landau damping rate increases with kλD, so does αlin. Now, from Eq. (1) it is

clear that, due to the decrease of Im(χ) shown in the previous Sections, Ed/Ep decreases as

the plasma wave grows, which entails a rapid drop of αd towards unity and hence a rapid

initial decrease of ω. As a consequence, the frequency shift, δω ≡ ω − ωlin, where ωlin is

the EPW linear frequency, is larger in magnitude than could be found by assuming that the

wave was freely propagating i.e., by solving Eq. (53) with αd = 1. This is illustrated in

Fig. 9 which clearly shows that the initial drop in δω is missed if one assumes αd = 1 when

solving Eq. (53). How to accurately calculate the nonlinear values of αd is explained in Ref.

[13] and, accounting for the decrease of αd allowed us to derive values of δω in very good

agreement with those derived from Vlasov simulations of SRS, as shown in Fig. 9 when

kλD ≈ 0.52.

After the initial drop in ω due to that of αd, the plasma wave frequency keeps on decreas-

ing due to the nonlinear change in Re(χ), which is calculated by making use of the adiabatic

approximation. Then, the value we find for Re(χ) in the limit of a vanishing wave amplitude

is the same as that published, for example, in Refs. [19–22]. However, unlike in these papers,
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FIG. 9: The nonlinear frequency shift of the plasma wave, δω, as calculated numerically from

Vlasov simulations of SRS (green dots), theoretically by solving Eq. (53) (black solid line), and by

solving Eq. (53) with αd = 1 (blue dashed line), when kλD ≈ 0.52.

we do find solutions to the dispersion relation when kλD > 0.53, and for an infinitely small

wave amplitude, because we solve Eq. (53) with αd 6= 1. Physically this means that, by

sending a laser into a plasma it is always possible to drive an electrostatic wave, even with

kλD > 0.53, and slowly enough for an adiabatic estimate of Re(χ) to be valid, as shown in

Ref. [13]. In order to calculate the nonlinear values of Re(χ), by making use of the adiabatic

approximation, we account for the nonlinear change of the phase velocity, which allows us

to find solutions to the dispersion relation Eq. (53) up to much larger values than if we had

assumed that the wave frame was inertial, as was done in Refs. [20, 22].

VI. APPLICATION TO STIMULATED RAMAN SCATTERING

In this Section, we briefly discuss how our theoretical model applies to the studying of

stimulated Raman scattering in the nonlinear regime, and we actually focus on the threshold

of the so-called “kinetic inflation”. This term was used in Ref. [10] to design the regime

where SRS reflectivity was experimentally found to be much larger than could be inferred

from linear theory, a result which was attributed to the nonlinear reduction of the Landau

damping rate.
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In its simplest version, SRS is a three wave process, an incident laser generating an

electron plasma wave and a scattered electromagnetic wave. We assume that the laser

intensity is small enough for each electric field to write in terms of a slowly varying amplitude

and an eikonal i.e., that the total electric field is,

~Etot = Ep sin(ϕp)x̂+ ŷ [El sin(ϕl) + Es cos(ϕs)] , (55)

where Ep, El and Es are, respectively, the plasma, laser and scattered wave amplitude. We

moreover require |E−1
p,l,s∂tEp,l,s| � |∂tϕp,l,s| and |E−1

p,l,s∂xEp,l,s| � |∂xϕp,l,s|. Then, in order to

address the issue of SRS, one actually needs to solve three coupled envelope equations, one

for each wave. It is actually more convenient to write these equations on complex quantities,

which lets us define,

Ep ≡ 2E0p, (56)

El ≡ 2E0le
i(klin

l x−ωlin
l t)e−iϕl , (57)

Es ≡ 2E0se
i(klin

s x−ωlin
s t)e−iϕsei

R t
0 δω(x,u)du, (58)

where klinl and klins are the linear values of the laser and scattered wave numbers, kl,s ≡ ∂xϕl,s,

ωlinl and ωlins are the linear values of the laser and scattered frequencies, ωl,s ≡ −∂tϕl,s, and

δω is the nonlinear frequency shift of the plasma wave, defined in Section V. Using Maxwell

equations, and writing Gauss’ law as in the previous Sections, we find the following equations,

valid for a uniform plasma and in 1-D,

∂E0p

∂t
+ vgp

∂E0p

∂x
+ νE0p =

Re(ΓpE0lE
∗
0s)

∂ωχrenv

, (59)

∂E0s

∂t
+ vgs

∂E0s

∂x
+ i [δω − vgsδk]E0s = ΓsE0lE

∗
0p, (60)

∂E0l

∂t
+ vgl

∂E0l

∂x
= −ΓlE0sE0p, (61)

where, in Eq. (60), δk is the nonlinear wave number shift of the plasma wave, related

to δω by the equation, ∂tδk = −∂xδω, vgl and vgs are the usual group velocities of the

electromagnetic waves, vgl ≡ klc/ωl, vgs ≡ ksc/ωs, and Γp = ek/mωlωs, Γs = ek/2mωl, and

Γl = ek/2mωs, where k ≡ ∂xϕp is the plasma wave number. The envelope equations (59-61)

are solved using the code BRAMA, which will be detailed in a forthcoming paper, and the

results are compared to those of the Vlasov code ELVIS, Ref. [9]. In our simulations, either

with the Vlasov or the envelope code, SRS results from the optical mixing of a laser, and a
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FIG. 10: Reflectivity, R, as a function of time when the laser intensity is Il = 1.5 × 1014W/cm2,

panel (a), as calculated using the Vlasov code ELVIS and, panel (b), using the envelope code

BRAMA, and when the laser intensity is Il = 2 × 1014W/cm2, panel (c), as given by a Valsov

simulation and, panel (d), as given by our envelope code.

counterpropagating seed, as explained in Section IV. The ratio between the seed intensity

Is(L) at the right end of the simulations box, and the laser intensity at the left end of the box,

IL(0), is chosen to be 10−5. Figure 10 plots the reflectivity R ≡ Is(0)/IL(0) as a function of

time, calculated for a 1-D uniform plasma with electron temperature, Te = 2keV, electron

density n = 0.1nc, and whose length is 100µm. The laser wavelength is 0.35 µm while the

seed wavelength is 0.55 µm. When the laser intensity is Il = 1.5×1014W/cm2, a linear theory

would predict the reflectivity to be Rlin ≈ 2×10−5, and both the Vlasov and envelope codes

find R of the order of 10−5. By contrast, when Il = 2 × 1014W/cm2, while the linear value

of the reflectivity is Rlin ≈ 3× 10−5, the reflectivity calculated either with the Vlasov or the

envelope code is of the order of 10%, as can be seen in Fig. 10. This Figure also shows some

discrepancies in the actual values of the reflectivity predicted by the two different codes,

whose origin will be discussed in a future paper and is way beyond the scope of this article.
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However, as regards the threshold for inflation, both codes agree that the threshold intensity

lies between 1.5 × 1014W/cm2 and 2 × 1014W/cm2, while the envelope code is about 5000

faster in providing this result. Hence, using the theoretical model described in the previous

Sections, we built a powerful tool to predict when stimulated Raman scattering is negligible,

which is an important issue for inertial confinement fusion (see for example Ref. [7]).

VII. CONCLUSION

In this paper, we investigated how efficiently an electron plasma wave (EPW) could be

externally driven. This led us define the nonlinear group velocity, vg, and Landau damping

rate, ν, of a driven plasma wave, which are terms appearing naturally in the envelope

equation for the wave amplitude. We provided a practical analytic formula for ν, and found

the unexpected result that ν assumed nearly constant values before abruptly dropping to

zero, and that this drop in ν occurred simultaneously with a rapid increase of vg towards

the wave phase velocity, and a decrease of the coupling constant between the plasma wave

and the driving field. We moreover unambiguously showed, without resorting to complex

contour deformation, that a plasma wave, first driven by laser at a small enough amplitude

and then freely propagating, would damp at the rate predicted by Landau. This then

imposes restrictions for non-Landau damping, as predicted by Belmont et al. in Ref. [5], to

indeed occur in actual experiments. All these results stem from our theoretical derivation of

Im(χ), which directly follows from the investigation of the nonlinear electron motion. The

expression found for Im(χ) actually results from the matching of two very different estimates,

a perturbative one for small amplitudes, and one relying on the adiabatic approximation

and valid whenever ν ≈ 0. This yields values for Im(χ) in excellent agreement with those

either inferred from test particle simulations or from Vlasov simulations of stimulated Raman

scattering (SRS).

We moreover discussed in this article the nonlinear frequency shift, δω, of a driven plasma

wave and found that |δω| was much larger than could be predicted by assuming that the wave

was freely propagating. We moreover showed that no physical effect could be attributed to

the increase of kλD above 0.53, unlike what could be inferred from Ref. [19]. This emphasizes

the importance of specifying the way a plasma wave has actually been generated in order to

discuss its nonlinear properties.
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Our results regarding both, the EPW envelope equation and its nonlinear frequency

shift, allow us to study SRS in the nonlinear regime. In particular, we investigated the

threshold of the so-called kinetic inflation, a regime where the SRS reflectivity is much

larger than predicted by linear theory. This threshold is a very important parameter for

inertial confinement fusion because, below it, one is assured that SRS reflectivity would be

very low and therefore that SRS would not affect the fusion efficiency. Using our model

when the plasma is homogeneous, and in a 1-D geometry, we found values for the inflation

threshold in very good agreement with those derived from Valsov simulations, but within

a much smaller computing time. This shows the potentiality of our model to address more

complicated physics situations.

In conclusion, we derived very precisely the nonlinear properties of a driven electron

plasma wave, which allowed us to discuss the generality of previous results on this topic,

which is a long standing, and basic issue in plasma physics. We moreover applied our results

to the studying of stimulated Raman scattering, and to the threshold for kinetic inflation,

which is an important issue for inertial confinement fusion.

Appendix A: Derivation of the relation between Ep, Ed, δϕ and Im(χ)

Let us consider the situation where the total longitudinal force, acting upon each plasma

electron is, Fx ≡ −eEx, with,

Ex(x, t) ≡ Ep(x, t) sin[ϕp(x, t)] + Ed(x, t) cos[ϕp(x, t) + δϕ(x, t)], (A1)

where Ep and Ed respectively stand for the slowly varying amplitude of the plasma wave

and of the drive, which are supposed to be real and positive. The total longitudinal field

may also be written,

Ex(x, t) = eiϕp [−iEp(t) + Ed(t)e
iδϕ] + c.c.

≡ −iE0(x, t)eiϕ + c.c., (A2)

where E0 =
√
E2
p + E2

d − 2EpEd sin(δϕ). We now write the charge density as,

ρ(x, t) ≡ ρ0(x, t)eiϕ + c.c., (A3)
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where ρ0 is a complex amplitude, and define χ ≡ −ρ0/(ε0kE0), where k ≡ ∂xϕp is the plasma

wave number. Then, from Gauss’ law, we find,

(kEp − i∂xEp)eiϕp = (ρ0/ε0)eiϕ (A4)

= −ikE0e
iϕ, (A5)

which, from Eq. (A2), yields,

kEp − i∂xEp = (−kEp − ikEdeiδϕ)χ. (A6)

The imaginary part of this equation may be written as,

Im(χ)Ep − k−1∂xEp = −Re(χ)Ed cos(δϕ) + Im(χ)Ed sin(δϕ). (A7)

Provided that Re(χ) ≈ −1 and |Im(χ)| � 1 then, in the situation where Ep, Ed and δϕ

only depend on time, one recovers Eq. (8) of Section II while, in the general case, one finds

Eq. (1) of Section I.

Appendix B: Hamiltonian perturbative analysis

In this Appendix, we use a first order Hamiltonian perturbative analysis to approximate

the motion of an electron acted upon by a longitudinal wave whose electric field is E ≡
−iE0(t)eiϕ(x,t) + c.c., and whose frequency, ω, and wave number, k, are defined by k =

∂xϕ, ω = −∂tϕ. In the dimensionless variables, τ = t/kvth, ϕ(τ) = ϕ[x(τ), τ ] and v =

v−1
th dx/dt, where vth =

√
Te/m is the thermal velocity, the electron dynamics derives from

the Hamiltonian,

H =
(v − vφ)2

2
+ (Φeiϕ + c.c.) (B1)

where Φ = eE0/kTe, and vφ = ω/kvth. The perturbative calculation consists in defining a

canonical change of variables (ϕ, v)→ (ϕ′, v′) such that v′ is a constant of motion, at least

at first order in the wave amplitude. The change of coordinates is defined using a generative

function, F (ϕ, v′), and is

ϕ′ = ϕ+ ∂v′F, (B2)

v = v′ + ∂ϕF. (B3)
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Then, ϕ ≈ ϕ0 + (v0 − vφ)τ + δϕ, where ϕ0 and v0 are constant, and

δϕ = −∂′vF. (B4)

In the new variables, the new Hamiltonian is,

H ′ = H +
∂F

∂t
=

(v′ + ∂ϕF − vφ)2

2
+ (Φeiϕ + c.c.) +

∂F

∂t
. (B5)

The generative function, F , is then chosen so as to cancel the term Φeiϕ + c.c., so that, at

first order in Φ, it needs to solve,

(v′ − vφ)
∂F

∂ϕ
+
∂F

∂t
= −Φeiϕ + c.c. (B6)

We now assume that, at τ = 0, the wave amplitude is infinitesimal, so that δϕ = F = 0.

Then, the solution of Eq. (B6) is,

F = −eiϕ
∫ τ

0

Φ(u)eiw(u−τ).c.c., (B7)

where we have denoted w = v′ − vφ. Then,

δϕ = −eiϕ∂w
(∫ τ

0

Φ(u)eiw(u−τ).c.c.

)
≈ −ei(ϕ0+wτ)∂w

(∫ τ

0

Φ(u)eiw(u−τ).c.c.

)
(B8)

Appendix C: Approximate expression for Im(χa).

In this Appendix, we give an approximate expression of

χa =
if ′0(vφ)

(kλD)2Φ(τ)

∫ τ

0

Φ(u)(u− τ)

∫
|w|>Vl

iweiw(ξ−τ)dwdu, (C.1)

in the limit Vl � τ−1
Φ , where τΦ is the typical timescale of variation of Φ. From the results

of Section III, it is clear that Im(χa) = −(kλD)−2f ′0(vφ)[π + δχa], with,

δχa = Φ(τ)−1

∫ τ

0

(u− τ)Φ(u)∂uG(u− τ)du (C.2)

where

G(u− τ) =

∫ Vl

−Vl

eiw(u−τ)dw. (C.3)
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Clearly, the timescale of variation of G is V −1
l , while ∂uG|u=τ = 0, and ∂2

u2G|u=τ = 2V 3
l /3.

Then, integrating (C.2) three times by parts yields

δχa = − 4V 3
l

3Φ(τ)

∫ τ

0

∫ u

0

∫ ξ

0

Φ(ξ′)dξ′dξdu

+Φ(τ)−1

∫ τ

0

[
(u− τ)∂4

u4G+ 3∂3
u3G
] (∫ u

0

∫ ξ

0

∫ ξ′

0

Φ(ξ′′)dξ′′dξ′dξ

)
du. (C.4)

Clearly, the last term in the right-hand side of Eq. (C.4) is of the order (VlτΦ) times the

first one, and is therefore negligible in the limit Vl � τ−1
Φ .
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